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Selective lipase-catalyzed acylation of 41-desmethoxyrapamycin has been achieved with a quaternary
carboxylic acid avoiding the use of vinyl ester activation. Among the acyl donors investigated, the novel
butanedione-monooxime and the N-acetylhydroxamate ester proved to be the most efficient donors,
comparable in reactivity to the undesired vinyl ester and allowing selective, preparative acylation on
gram scale in excellent yields. These new donors are proposed as sustainable and process-friendly alter-
natives to the widely used vinyl ester substrate activation in lipase-catalyzed acylations of secondary
alcohols.

� 2010 Elsevier Ltd. All rights reserved.
Rapamycin (sirolimus, Rapamune), a 31-member polyketide
macrolide1a,b with immunosuppressive1c and antiproliferative
properties,1d and its analogs have been extensively reviewed.2

The two most prominent7 derivatives, temsirolimus (CCI-779)3

and everolimus (RAD001)4 (Fig. 1), are mTOR inhibitors5 used in
cancer therapy.6,8
ll rights reserved.
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Evidently, as all rapamycin derivatives currently approved
(temsirolimus, everolimus) for human therapy or in clinical trials
(Ridaforolimus) are 42-O-substituted molecules, the ability to
carry out selective modifications at/of the C42-hydroxyl is an
important asset.10 A Wyeth group had reported regioselective
lipase-catalyzed acylation of the 42-OH group in Rapamycin via
mical Research & Development, Eastern Point Road, Groton, CT 06340, United States.
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the Maillard/Wong enol ester activation method11 for a number of
different carboxylic acids, enabling the efficient conversion of rap-
amycin into temsirolimus12 (compare Fig. 1).13

A serious drawback of this vinyl ester methodology lies in the
stoichiometric generation of acetaldehyde.14 The low boiling point
(21 �C) and flash point (�40 �C) of acetaldehyde and the explosive
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Scheme
properties of acetaldehyde-air mixtures15 present significant pro-
cess obstacles. Also, synthesis of hindered vinyl ester donors typi-
cally requires the use of excess vinyl acetate at reflux temperature
and its subsequent distillative removal,16,17 another safety hazard
due to the potential of vinyl acetate to undergo exothermic poly-
merization in the gas phase18a and the polymerization hazard of
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vinyl compounds in general.18b Published reports on scale-up of
selective vinyl ester-mediated acylations are therefore very
scarce.19

Our investigation focused on finding a benign and scalable acyl
donor for selective acylation of 41-desmethoxy-rapamycin A to the
recently disclosed, biologically active rapamycin derivative 41-des-
methoxy temsirolimus20 B (Fig. 29,20).

We initially evaluated a number of obvious vinyl ester substi-
tutes, such as the corresponding isopropenyl ester21 2, the trihalo-
ethyl esters22 3/4, and a few other activated ester derivatives
depicted in Scheme 1.

Disappointingly, all of them were significantly inferior to the vi-
nyl ester control reaction under the same conditions.12 Surpris-
ingly, there was a large rate difference between the vinyl and the
isopropenyl ester reactions (entries 1 and 2).23

Since some initial reactivity was seen with the N-hydoxysuc-
cinmidyl ester (entry 4), we decided to expand this structural mo-
tive into leaving groups that would not be basic enough to cause
decomposition of the sensitive des methoxyrapamycin starting
material, such as seen with the imidazolide (entry 5) and a number
of nucleophilic catalysts also tried in conjunction with simple alkyl
and a number of different haloalkyl esters (data not shown)�.

The acetoneoxime active ester method24 came to mind, espe-
cially since this active ester had been used in a selective, lipase-
� Rapamycin is rather labile to base; prolonged heating in the presence of a weak
base, even at low concentration, leads to decomposition, the major side-product being
the lactone ring-opened product (i.e., ‘‘seco-rapamycin”).
catalyzed acylation of a primary hydroxyl group (nucleoside deriv-
ative) carried out on pilot plant scale by a Schering–Plough group a
few years ago.25 Surprisingly, the intriguing reports of Schowen
et al.,26 Pratt et al.,27 and Demuth et al.28 on N-peptidyl-
O-acylhydroxylamines, inhibitors of several classes of proteases
(via irreversible acylation of a SER-hydroxy group in the active cen-
ter of the enzyme), had been known for some time without trigger-
ing any curiosity in the potential use of this activation principle for
lipase-catalyzed acylations.29 An initial screen with the acetone
oxime ester 3 and a number of additional oximates (2, 4, 6) as well
as the N-acetylhydroxamate ester 5 with two selected, immobi-
lized lipases was conducted (Scheme 2).

The oxime esters 4 and 6 showed promising activity surpassing
that of the known acetone oxime ester (3). More efficient initial
conversions were observed with the T. lanuginosus lipase compared
to the B. cepacia lipase, the benchmark enzyme from the earlier vi-
nyl ester study.12 Remarkably, the hydroxamate 5 also showed acyl
donor activity better than the acetone oxime ester 3. Little is
known on the impact of oxime ester structure on acylation effi-
ciency in lipase-catalyzed reactions,30 whereas N-acylhydroxa-
mates such as 6 have not previously been evaluated as acyl
donors in enzyme-catalyzed reactions.29

The two oxime esters 3 and 6 as well as the hydroxamate ester 5
were investigated further in a proof-of-concept study with immo-
bilized T. lanuginosus and B. cepacia lipases in preparative gram-
scale experiments (Scheme 3). The butanedione(mono)oxime ester
6 and the N-acetylhydroxamate ester 5 emerged as the most prom-
ising candidates for further development. Interestingly, for the
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butanedione monoxime ester, we observed practically no differ-
ence in acylation efficiency between the two lipases tested,
whereas the N-acetylhydroxamate ester appeared significantly
more sensitive to lipase origin. We consider the hydroxamate ester
to be an especially promising lead, as the N-acyl group can be read-
ily modified (e.g., from acetyl to halo- or trihaloacetyl, or to a chiral
acyl group, for applications in stereoselective synthesis) to adjust
acylating properties.31 Certainly both these novel acylating agents
are much more amenable to scale-up and comparatively non-
toxic32 compared with the corresponding vinyl ester and its leav-
ing group acetaldehyde.

As a conclusion, we have identified two promising alternatives
for vinyl ester-activated, sterically hindered carboxylic acids in li-
pase-catalyzed acylations. From a process point of view, both the
butanedione monooxime ester and the N-acetylhydroxamate ester
are much more desirable candidates for scale-up development and
we expect them to be useful for other applications in natural prod-
uct synthesis as well.
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